Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Catal ; 14(7): 5314-5325, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38601783

RESUMEN

Upcycling plastic wastes into value-added chemicals is a promising approach to put end-of-life plastic wastes back into their ecocycle. As one of the polyesters that is used daily, polyethylene terephthalate (PET) plastic waste is employed here as the model substrate. Herein, a nickel (Ni)-based catalyst was prepared via electrochemically depositing copper (Cu) species on Ni foam (NiCu/NF). The NiCu/NF formed Cu/CuO and Ni/NiO/Ni(OH)2 core-shell structures before electrolysis and reconstructed into NiOOH and CuOOH/Cu(OH)2 active species during the ethylene glycol (EG) oxidation. After oxidation, the Cu and Ni species evolved into more reduced species. An indirect mechanism was identified as the main EG oxidation (EGOR) mechanism. In EGOR, NiCu60s/NF catalyst exhibited an optimal Faradaic efficiency (FE, 95.8%) and yield rate (0.70 mmol cm-2 h-1) for formate production. Also, over 80% FE of formate was achieved when a commercial PET plastic powder hydrolysate was applied. Furthermore, commercial PET plastic water bottle waste was employed as a substrate for electrocatalytic upcycling, and pure terephthalic acid (TPA) was recovered only after 1 h electrolysis. Lastly, density functional theory (DFT) calculation revealed that the key role of Cu was significantly reducing the Gibbs free-energy barrier (ΔG) of EGOR's rate-determining step (RDS), promoting catalysts' dynamic evolution, and facilitating the C-C bond cleavage.

2.
Diabetes Metab Res Rev ; 40(3): e3789, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501707

RESUMEN

AIMS: Diabetic Kidney Disease (DKD), one of the major complications of diabetes, is also a major cause of end-stage renal disease. Metabolomics can provide a unique metabolic profile of the disease and thus predict or diagnose the development of the disease. Therefore, this study summarises a more comprehensive set of clinical biomarkers related to DKD to identify functional metabolites significantly associated with the development of DKD and reveal their driving mechanisms for DKD. MATERIALS AND METHODS: We searched PubMed, Embase, the Cochrane Library and Web of Science databases through October 2022. A meta-analysis was conducted on untargeted or targeted metabolomics research data based on the strategy of standardized mean differences and the process of ratio of means as the effect size, respectively. We compared the changes in metabolite levels between the DKD patients and the controls and explored the source of heterogeneity through subgroup analyses, sensitivity analysis and meta-regression analysis. RESULTS: The 34 clinical-based metabolomics studies clarified the differential metabolites between DKD and controls, containing 4503 control subjects and 1875 patients with DKD. The results showed that a total of 60 common differential metabolites were found in both meta-analyses, of which 5 metabolites (p < 0.05) were identified as essential metabolites. Compared with the control group, metabolites glycine, aconitic acid, glycolic acid and uracil decreased significantly in DKD patients; cysteine was significantly higher. This indicates that amino acid metabolism, lipid metabolism and pyrimidine metabolism in DKD patients are disordered. CONCLUSIONS: We have identified 5 metabolites and metabolic pathways related to DKD which can serve as biomarkers or targets for disease prevention and drug therapy.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Fallo Renal Crónico , Humanos , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Metabolómica/métodos , Metaboloma , Biomarcadores/metabolismo
3.
Phytomedicine ; 128: 155367, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38493720

RESUMEN

BACKGROUND: Mycotoxins have been reported to be present in medicinal plants. With the growing usage of medicinal plants, contamination of mycotoxins has emerged as one of the biggest threats to global food hygiene and ecological environment, posing a severe threat to human health. PURPOSE: This study aimed to determine the mycotoxin prevalence and levels in medicinal plants and conduct a risk assessment by conducting a systematic review and meta-analysis. METHODS: A thorough search on Web of Science and PubMed was conducted for the last decade, resulting in 54 studies (meeting the inclusion criteria) with 2829 data items that were included in the meta-analysis. RESULTS: The combined prevalence of mycotoxins in medicinal plants was 1.7% (95% confidence interval, CI = 1.1% - 2.4%), with a mean mycotoxin concentration in medicinal plants of 3.551 µg/kg (95% CI = 3.461 - 3.641 µg/kg). Risk assessment results indicated that aflatoxins and ochratoxin A found in several medicinal plants posed a health risk to humans; additionally, emerging enniatins exhibited possible health risks. CONCLUSION: Therefore, the study underlines the need for establishing stringent control measures to reduce the severity of mycotoxin contamination in medicinal plants.

4.
Biomed Pharmacother ; 172: 116302, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387133

RESUMEN

Ulcerative colitis (UC) represents an inflammatory disease characterized by fluctuations in severity, posing substantial challenges in treatment. The gut microbiota plays a pivotal role in the pathogenesis of UC. This study sought to identify drugs specifically targeting the gut microbiota to mitigate UC. We initiated a meta-analysis on gut microbiota in UC patients to identify UC-associated bacterial strains. Subsequently, we screened 164 dietary herbal medicines in vitro to identify potential prebiotics for the UC-associated bacterium, Bacteroides thetaiotaomicron. The DSS-induced colitis mouse model was utilized to evaluate the anti-colitis efficacy of the identified dietary herbal medicine. Full-length 16 S rRNA amplicon sequencing was employed to observe changes in gut microbiota following dietary herbal medicine intervention. The relative abundance of Bacteroides was notably diminished in UC patients compared to their healthy counterparts. B. thetaiotaomicron exhibited an inverse relationship with UC symptoms, indicating its potential as an anti-colitis agent. In vitro assessments revealed that H. Herba significantly bolstered the proliferation of B. thetaiotaomicron. Further experiments showed that treating DSS-induced mice with an aqueous extract of H. Herba considerably alleviated colitis indicators such as weight loss, colon shortening, disease activity score (DAI), and systemic inflammation. Microbial analysis revealed B. thetaiotaomicron as the sole bacterium substantially augmented by H. Herba in vivo. Overall H. Herba emerges as a promising prebiotic for B. thetaiotaomicron, offering significant anti-colitis benefits. Employing a gut microbiota-centric approach proves valuable in the quest for drug discovery.This study provides a new paradigm for drug discovery that targets the gut microbiota to treat UC.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Humanos , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Bacteroides , Prebióticos
5.
Nat Commun ; 15(1): 998, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307931

RESUMEN

Single-atom catalysts (SACs) offer efficient metal utilization and distinct reactivity compared to supported metal nanoparticles. Structure-function relationships for SACs often assume that active sites have uniform coordination environments at particular binding sites on support surfaces. Here, we investigate the distribution of coordination environments of Pt SAs dispersed on shape-controlled anatase TiO2 supports specifically exposing (001) and (101) surfaces. Pt SAs on (101) are found on the surface, consistent with existing structural models, whereas those on (001) are beneath the surface after calcination. Pt SAs under (001) surfaces exhibit lower reactivity for CO oxidation than those on (101) surfaces due to their limited accessibility to gas phase species. Pt SAs deposited on commercial-TiO2 are found both at the surface and in the bulk, posing challenges to structure-function relationship development. This study highlights heterogeneity in SA coordination environments on oxide supports, emphasizing a previously overlooked consideration in the design of SACs.

6.
Arch Med Res ; 55(1): 102907, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38029644

RESUMEN

OBJECTIVE: The underdiagnosis and inadequate treatment of rheumatoid arthritis (RA) can be attributed to the various clinical manifestations presented by patients. To address this concern, we conducted an extensive review and meta-analysis, focusing on RA-related metabolites. METHODS: A comprehensive literature search was conducted in PubMed, the Cochrane Library, Web of Science, and Embase to identify relevant studies published up to October 5, 2022. The quality of the included articles was evaluated and, subsequently, a meta-analysis was conducted using Review Manager software to analyze the association between metabolites and RA. RESULTS: Forty nine studies met the inclusion criteria for the systematic review, and six of these studies were meta-analyzed to evaluate the association between 28 reproducible metabolites and RA. The results indicated that, compared to controls, the levels of histidine (RoM = 0.83, 95% CI = 0.79-0.88, I2 = 0%), asparagine (RoM = 0.83, 95% CI = 0.75-0.91, I2 = 0%), methionine (RoM = 0.82, 95% CI = 0.69-0.98, I2 = 85%), and glycine (RoM = 0.81, 95% CI = 0.67-0.97, I2 = 68%) were significantly lower in RA patients, while hypoxanthine levels (RoM = 1.14, 95% CI = 1.09-1.19, I2 = 0%) were significantly higher. CONCLUSION: This study identified histidine, methionine, asparagine, hypoxanthine, and glycine as significantly correlated with RA, thus offering the potential for the advancement of biomarker discovery and the elucidation of disease mechanisms in RA.


Asunto(s)
Artritis Reumatoide , Asparagina , Humanos , Asparagina/uso terapéutico , Histidina/uso terapéutico , Artritis Reumatoide/diagnóstico , Metionina/uso terapéutico , Glicina/uso terapéutico , Hipoxantinas/uso terapéutico
7.
ACS Mater Lett ; 5(11): 3032-3041, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37969139

RESUMEN

Photocatalytic plastic waste upcycling into value-added feedstock is a promising way to mitigate the environmental issues caused by the nondegradable nature of plastic waste. Here, we developed a MoS2/g-C3N4 photocatalyst that can efficiently upcycle poly(ethylene terephthalate) (PET) into valuable organic chemicals. Interestingly, the conversion mechanism is concentration-dependent. For instance, at a low ethylene glycol (EG) concentration (7.96 mM), acetate is the main product. Unexpectedly, the conversion of PET water bottle hydrolysate with only 7.96 mM ethylene glycol (EG) can produce a 4 times higher amount of acetate (704.59 nmol) than the conversion of 300 mM EG (174.50 nmol), while at a higher EG concentration (300 mM), formate is the dominant product. Herein, a 40 times higher EG concentration (300 mM compared to 7.96 mM) would produce only ∼3 times more formate (179 nmol compared to 51.86 nmol). In addition, under natural sunlight conditions, comparable amounts of liquid and gaseous products are produced when commercial PET plastics are employed. Overall, the photocatalytic PET conversion process is quite efficient under a low concentration of EG in PET hydrolysate, indicating the enormous potential of this photocatalysis strategy for real plastics upcycling.

8.
Artículo en Inglés | MEDLINE | ID: mdl-37827069

RESUMEN

Fructus Psoraleae (FP), one of the important traditional Chinese medicines, is widely used in clinic and has been reported to be hepatotoxic. However, there is no report on the mechanism of FP-induced hepatotoxicity based on the theory of You Gu Wu Yun. In this study, plasma samples of rats with different kidney deficiency syndromes were investigated using a lipidomics approach based on UPLC/Q-TOF-MS technique. Firstly, multivariate statistical analysis, VIP value test, statistical test and other methods were used to find the lipid metabolites in the two syndrome model groups that were different from the normal group. The screening of differential lipid metabolites revealed that there were 12 biomarkers between the blank group and the kidney-yang deficiency model group as well as 16 differential metabolites between the kidney-yin deficiency model group, and finally a total of 17 relevant endogenous metabolites were identified, which could be used as differential lipid metabolites to distinguish between kidney-yin deficiency and kidney-yang deficiency evidence. Secondly, the relative content changes of metabolites in rats after administration of FP decoction were further compared to find the substances associated with toxicity after administration, and the diagnostic ability of the identified biomarkers was evaluated using a receiver operating characteristic curve (ROC). Results a total of 14 potential differential lipid metabolites, including LysoPC(20:0/0:0) and LysoPC(16:0/0:0), which may be related to hepatotoxicity in rats with kidney-yin deficiency syndrome were further screened, namely, the potential active lipid metabolites related to hepatotoxicity in rats induced by FP. Finally, cluster analysis, MetPA analysis and KEGG database were used to analyze metabolic pathways. It was discovered that the metabolism of glycerophospholipid and sphingolipid may be strongly related to the mechanism of hepatotoxicity brought on by FP. Overall, we described the lipidomics changes in rats treated with FP decoction and screened out 14 lipid metabolites related to hepatotoxicity in rats with kidney-yin deficiency, which served as a foundation for the theory of "syndrome differentiation and treatment" in traditional Chinese medicine and a guide for further investigation into the subsequent mechanism.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Medicamentos Herbarios Chinos , Trastornos del Metabolismo de los Lípidos , Ratas , Animales , Ratas Sprague-Dawley , Deficiencia Yin/metabolismo , Medicamentos Herbarios Chinos/farmacología , Deficiencia Yang , Lipidómica , Metabolismo de los Lípidos , Riñón/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Biomarcadores/metabolismo , Lípidos
9.
JACS Au ; 3(8): 2299-2313, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37654595

RESUMEN

The addition of platinum-group metals (PGMs, e.g., Pt) to CeO2 is used in heterogeneous catalysis to promote the rate of redox surface reactions. Well-defined model system studies have shown that PGMs facilitate H2 dissociation, H-spillover onto CeO2 surfaces, and CeO2 surface reduction. However, it remains unclear how the heterogeneous structures and interfaces that exist on powder catalysts influence the mechanistic picture of PGM-promoted H2 reactions on CeO2 surfaces developed from model system studies. Here, controlled catalyst synthesis, temperature-programmed reduction (TPR), in situ infrared spectroscopy (IR), and in situ electron energy loss spectroscopy (EELS) were used to interrogate the mechanisms of how Pt nanoclusters and single atoms influence H2 reactions on high-surface area Pt/CeO2 powder catalysts. TPR showed that Pt promotes H2 consumption rates on Pt/CeO2 even when Pt exists on a small fraction of CeO2 particles, suggesting that H-spillover proceeds far from Pt-CeO2 interfaces and across CeO2-CeO2 particle interfaces. IR and EELS measurements provided evidence that Pt changes the mechanism of H2 activation and the rate limiting step for Ce3+, oxygen vacancy, and water formation as compared to pure CeO2. As a result, higher-saturation surface hydroxyl coverages can be achieved on Pt/CeO2 compared to pure CeO2. Further, Ce3+ formed by spillover-H from Pt is heterogeneously distributed and localized at and around interparticle CeO2-CeO2 boundaries, while activated H2 on pure CeO2 results in homogeneously distributed Ce3+. Ce3+ localization at and around CeO2-CeO2 boundaries for Pt/CeO2 is accompanied by surface reconstruction that enables faster rates of H2 consumption. This study reconciles the materials gap between model structures and powder catalysts for H2 reactions with Pt/CeO2 and highlights how the spatial heterogeneity of powder catalysts dictates the influence of Pt on H2 reactions at CeO2 surfaces.

11.
Microsc Microanal ; 29(Supplement_1): 649-650, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613320
16.
Nat Commun ; 14(1): 4554, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507382

RESUMEN

Electrocatalytic reduction of waste nitrates (NO3-) enables the synthesis of ammonia (NH3) in a carbon neutral and decentralized manner. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts demonstrate a high catalytic activity and uniquely favor mono-nitrogen products. However, the reaction fundamentals remain largely underexplored. Herein, we report a set of 14; 3d-, 4d-, 5d- and f-block M-N-C catalysts. The selectivity and activity of NO3- reduction to NH3 in neutral media, with a specific focus on deciphering the role of the NO2- intermediate in the reaction cascade, reveals strong correlations (R=0.9) between the NO2- reduction activity and NO3- reduction selectivity for NH3. Moreover, theoretical computations reveal the associative/dissociative adsorption pathways for NO2- evolution, over the normal M-N4 sites and their oxo-form (O-M-N4) for oxyphilic metals. This work provides a platform for designing multi-element NO3RR cascades with single-atom sites or their hybridization with extended catalytic surfaces.

17.
Nano Lett ; 23(12): 5409-5416, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307077

RESUMEN

Defect engineering in perovskite thin films has attracted extensive attention recently due to the films' atomic-scale modification, allowing for remarkable flexibility to design novel nanostructures for next generation nanodevices. However, the defect-assisted three-dimensional nanostructures in thin film matrices usually has large misfit strain and thus causes unstable thin film structures. In contrast, defect-assisted one- or two-dimensional nanostructures embedded in thin films can sustain large misfit strains without relaxation, which make them suitable for defect engineering in perovskite thin films. Here, we reported the fabrication and characterization of edge-type misfit dislocation-assisted two-dimensional BiMnOx nanochannels embedded in SrTiO3/La0.7Sr0.3MnO3/TbScO3 perovskite thin films. The nanochannels are epitaxially grown from the surrounding films without noticeable misfit strain. Diode-like current rectification was spatially observed at nanochannels due to the formation of Schottky junctions between BiMnOx nanochannels and conducting La0.7Sr0.3MnO3 thin films. Such atomically scaled heterostructures constitute more flexible ultimate functional units for nanoscale electronic devices.

19.
J Am Chem Soc ; 145(20): 11415-11419, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37172099

RESUMEN

Atomically dispersed catalysts such as single-atom catalysts have been shown to be effective in selectively oxidizing methane, promising a direct synthetic route to value-added oxygenates such as acetic acid or methanol. However, an important challenge of this approach has been that the loading of active sites by single-atom catalysts is low, leading to a low overall yield of the products. Here, we report an approach that can address this issue. It utilizes a metal-organic framework built with porphyrin as the linker, which provides high concentrations of binding sites to support atomically dispersed rhodium. It is shown that up to 5 wt% rhodium loading can be achieved with excellent dispersity. When used for acetic acid synthesis by methane oxidation, a new benchmark performance of 23.62 mmol·gcat-1·h-1 was measured. Furthermore, the catalyst exhibits a unique sensitivity to light, producing acetic acid (under illumination, up to 66.4% selectivity) or methanol (in the dark, up to 65.0% selectivity) under otherwise identical reaction conditions.

20.
Nat Mater ; 22(5): 540-541, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138007
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...